数学表达式: z j ( l ) = ∑ i = 1 n ( l − 1 ) w j i ( l ) a i ( l − 1 ) + b j ( l ) z_j^{(l)} = \sum_{i=1}^{n^{(l-1)}} w_{ji}^{(l)} a_i^{(l-1)} + b_j^{(l)} zj(l)=∑i=1n(l−1)wji(l)ai(l−1)+bj(l)
公式解释:
( l ) ( l ) (l) 表示当前层, ( j ) ( j ) (j)表示当前层的神经元索引,( i ) 表示前一层的神经元索引
z j ( l ) z_j^{(l)} zj(l) 表示第 ( l l l) 层第 ( j j j) 个神经元的输入加权和。
n ( l − 1 ) n^{(l-1)} n(l−1) 表示第 ( l − 1 l-1 l−1) 层的神经元数量。
w j i ( l ) w_{ji}^{(l)} wji(l) 表示从第 ( l − 1 l-1 l−1) 层第 i i i 个神经元到第 l l l 层第 j j j 个神经元的权重。
a i ( l − 1 ) a_i^{(l-1)} ai(l−1) 表示第 ( l − 1 l-1 l−1) 层第 i i i 个神经元的输出(激活值)。
b j ( l ) b_j^{(l)} bj(l) 表示第 l l l 层第 j j j 个神经元的偏置。
3.4.2、激活函数
激活函数:Activation Function
加权和 ( z ) ( z ) (z)通过激活函数生成当前层神经元的输出。
数学表达式: a j ( l ) = f ( z j ( l ) ) a_j^{(l)} = f(z_j^{(l)}) aj(l)=f(zj(l))
a j ( l ) a_j^{(l)} aj(l) 表示第 l l l 层第 j j j 个神经元的输出(激活值),其中 f f f 是激活函数。
3.5、反向传播
反向传播:Backward Propagation
3.5.1、计算梯度
计算梯度:Compute Gradients
反向传播从输出层开始,通过计算损失函数的梯度,逐层向前传播误差,计算每个权重和偏置的梯度。
数学表达式(举例说明): [ δ j ( l ) = ∂ L ∂ z j ( l ) ] [ \delta^{(l)}_j = \frac{\partial L}{\partial z^{(l)}_j} ] [δj(l)=∂zj(l)∂L]
( δ j ( l ) ) ( \delta^{(l)}_j ) (δj(l))是第 ( l ) ( l ) (l)层第 ( j ) ( j ) (j)个神经元的误差项, ( L ) ( L ) (L)是损失函数。
3.5.2、更新权重和偏置
权重和偏置:Weights and Biases
使用优化算法(如梯度下降)更新每个权重和偏置,以最小化损失函数。
数学表达式:KaTeX parse error: {align*} can be used only in display mode.