如果 α 是 ( G 1 , A 1 ) 到 ( G 2 , A 2 ) 的可测映象, β 是 ( G 2 , A 2 ) 到 ( G 3 , A 3 )的可测映象 β α ( G 1 , A 1 ) 到的可测映象,前提是 β 的定义域包含 α ( G 1 ) 如果\alpha是(G_1,A_1)到(G_2,A_2)的可测映象,\beta是(G_2,A_2)到(G_3,A_3)的可测映象\\\beta\alpha(G_1,A_1)到的可测映象,前提是\beta的定义域包含\alpha(G_1) 如果α是(G1,A1)到(G2,A2)的可测映象,β是(G2,A2)到(G3,A3)的可测映象βα(G1,A1)到的可测映象,前提是β的定义域包含α(G1)
设 ( G , M ) 为某可测空间,非负函数 φ ( A ) ( A ∈ M ) 称为测度 对 M 中任一有限或可数多个两两不相交的集 A 1 , A 2 , . . . , φ ( ∪ A k ) = Σ φ ( A k ) , φ ( G ) = 1 的测度称为概率测度。 设(G,M)为某可测空间,非负函数\varphi(A)(A \in M)称为测度 \\对M中任一有限或可数多个两两不相交的集A_1,A_2,...,\varphi(\cup A_k)=\Sigma \varphi(A_k),\varphi(G)=1的测度称为概率测度。 设(G,M)为某可测空间,非负函数φ(A)(A∈M)称为测度对M中任一有限或可数多个两两不相交的集A1,A2,...,φ(∪Ak)=Σφ(Ak),φ(G)=1的测度称为概率测度。
令 α i 为从 ( G , A ) 到 ( G i , A i ) 的可测映象,则由公式 令\alpha_i为从(G,A)到(G_i,A_i)的可测映象,则由公式 令αi为从(G,A)到(Gi,Ai)的可测映象,则由公式 α ( w ) = { α 1 ( w ) , α 2 ( w ) , . . . } 所定义的 空间 ( G , A ) 到 ( G 1 × G 2 × . . . . G n , A 1 × A 2 × . . . . ) 的映象是可测的。 \alpha(w)=\{\alpha_1(w),\alpha_2(w),...\}所定义的 \\空间(G,A)到(G_1\times G_2 \times ....G_n,A_1 \times A_2 \times....)的映象是可测的。 α(w)={α1(w),α2(w),...}所定义的空间(G,A)到(G1×G2×....Gn,A1×A2×....)的映象是可测的。
如果 0 ≤ f n ( w ) ↑ f ( w ) 对一切 w ∈ A 成立,则 如果0\le f_n(w)\uparrow f(w)对一切w \in A成立,则 如果0≤fn(w)↑f(w)对一切w∈A成立,则 lim ∫ A f n ( w ) φ ( d w ) = ∫ A f n ( w ) φ ( d w ) \lim\int_Af_n(w)\varphi(dw)=\int_Af_n(w)\varphi(dw) lim∫Afn(w)φ(dw)=∫Afn(w)φ(dw)
如果对于一切 w ∈ A , f n ( w ) → f ( w ) , ∣ f n ( w ) ∣ < g ( w ) ,且 g 在 A 上 φ 可积,则 如果对于一切w \in A,f_n(w)\rightarrow f(w),|f_n(w)| \lt g(w),且g在A上\varphi可积,则 如果对于一切w∈A,fn(w)→f(w),∣fn(w)∣ lim ∫ A f n ( w ) φ ( d w ) = ∫ A f n ( w ) φ ( d w ) \lim\int_Af_n(w)\varphi(dw)=\int_Af_n(w)\varphi(dw) lim∫Afn(w)φ(dw)=∫Afn(w)φ(dw)
令 M i 为 G i 中的 σ 代数, φ i 为 M i 上的测度 ( i = 1 , 2 ) ,设 f ( w 1 , w 2 ) 是 G 1 × G 2 上的 M 1 × M 2 可测函数,则 令M_i为G_i中的\sigma代数,\varphi_i为M_i上的测度(i=1,2),设f(w_1,w_2)是G_1 \times G_2上的M_1\times M_2可测函数,则 令Mi为Gi中的σ代数,φi为Mi上的测度(i=1,2),设f(w1,w2)是G1×G2上的M1×M2可测函数,则 ∫ G 1 [ ∫ G 2 ∣ f ( w 1 , w 2 ) ∣ φ 2 ( d w 2 ) ] φ 1 ( d w 1 ) < ∞ ,则 ∫ G 1 [ ∫ G 2 ∣ f ( w 1 , w 2 ) ∣ φ 2 ( d w 2 ) ] φ 1 ( d w 1 ) = ∫ G 2 [ ∫ G 1 ∣ f ( w 1 , w 2 ) ∣ φ 2 ( d w 1 ) ] φ 1 ( d w 2 ) \int_{G_1}[\int_{G_2}\mid f(w_1,w_2) \mid \varphi_2(dw_2)]\varphi_1(dw_1) \lt \infty,则 \\\int_{G_1}[\int_{G_2}\mid f(w_1,w_2) \mid \varphi_2(dw_2)]\varphi_1(dw_1) = \int_{G_2}[\int_{G_1}\mid f(w_1,w_2) \mid \varphi_2(dw_1)]\varphi_1(dw_2) ∫G1[∫G2∣f(w1,w2)∣φ2(dw2)]φ1(dw1)<∞,则∫G1[∫G2∣f(w1,w2)∣φ2(dw2)]φ1(dw1)=∫G2[∫G1∣f(w1,w2)∣φ2(dw1)]φ1(dw2)
设 α 是 ( G 1 , A 1 ) 到 ( G 2 , A 2 ) 的可测映象, φ 是 A 1 上的测度,则 A 2 上的测度可如下定义 设\alpha是(G_1,A_1)到(G_2,A_2)的可测映象,\varphi是A_1上的测度,则A_2上的测度可如下定义 设α是(G1,A1)到(G2,A2)的可测映象,φ是A1上的测度,则A2上的测度可如下定义 ψ ( τ ) = φ { α ( w ) ∈ τ } ( τ ∈ A 2 ) 定义 A 2 下的测度,对任一 A 2 可测函数 f ∫ G 2 f ( w 2 ) ψ ( d w 2 ) = ∫ G 1 f [ α ( w 1 ) ] φ ( d w 1 ) \psi(\tau)=\varphi\{\alpha(w)\in \tau\}(\tau \in A_2) \\定义A_2下的测度,对任一A_2可测函数f \\\int_{G_2}f(w_2)\psi(dw_2)=\int_{G_1}f[\alpha(w_1)]\varphi(dw_1) ψ(τ)=φ{α(w)∈τ}(τ∈A2)定义A2下的测度,对任一A2可测函数f∫G2f(w2)ψ(dw2)=∫G1f[α(w1)]φ(dw1)
设 U , V , Z 为三个空间, A U , A V , A Z 为这些空间的子集 σ 代数 F ( u , z ) ( u ∈ U , z ∈ Z ) 为关于 A 1 × A 2 的可测函数, P v ( v ∈ V ) 是 σ 代数 A Z 上的测度,并且对任意 τ ∈ A Z , P v ( τ ) 为 A V 可测 如果积分 G ( u , v ) = ∫ Z F ( u , v ) P ( d z ) 对一切 u ∈ U , v ∈ V 收敛, 它是 A U × A V 可测函数。 设U,V,Z为三个空间,A_U,A_V,A_Z为这些空间的子集\sigma 代数\\ F(u,z)(u \in U,z \in Z)为关于A_1\times A_2的可测函数, \\P_v(v \in V)是\sigma代数A_Z上的测度,并且对任意\tau \in A_Z,P_v(\tau)为A_V可测 \\如果积分G(u,v)=\int_Z F(u,v)P(dz)对一切u\in U,v \in V收敛, \\它是A_U\times A_V可测函数。 设U,V,Z为三个空间,AU,AV,AZ为这些空间的子集σ代数F(u,z)(u∈U,z∈Z)为关于A1×A2的可测函数,Pv(v∈V)是σ代数AZ上的测度,并且对任意τ∈AZ,Pv(τ)为AV可测如果积分G(u,v)=∫ZF(u,v)P(dz)对一切u∈U,v∈V收敛,它是AU×AV可测函数。
例子: { 1 , sin x , cos x , sin 2 x , cos 2 x , … , sin n x , cos n x , … } \{1, \sin x, \cos x, \sin 2x, \cos 2x, \ldots, \sin nx, \cos nx, \ldots\} {1,sinx,cosx,sin2x,cos2x,…,sinnx,cosnx,…}。这是傅里叶级数展开的基础,广泛应用于信号处理、图像处理等领域。
幂函数系:
定义:虽然幂函数系 { 1 , x , x 2 , x 3 , … } \{1, x, x^2, x^3, \ldots\} {1,x,x2,x3,…}在一般区间内不是正交的,但它在某些特定问题中仍具有重要作用。例如,在泰勒级数展开中,幂函数系用于表示函数的局部近似。
具体来说,设 E E E是实数集 R R R上的一个可测集, f ( x ) f(x) f(x)是定义在 E E E上的非负可测函数。则 f ( x ) f(x) f(x)在 E E E上的勒贝格积分定义为:
∫ E f ( x ) d x = sup { ∫ E ϕ ( x ) d x : ϕ ( x ) 是 E 上的非负简单函数,且 0 ≤ ϕ ( x ) ≤ f ( x ) } \int_E f(x) \, dx = \sup \left\{ \int_E \phi(x) \, dx : \phi(x) \text{ 是 } E \text{ 上的非负简单函数,且 } 0 \leq \phi(x) \leq f(x) \right\} ∫Ef(x)dx=sup{∫Eϕ(x)dx:ϕ(x) 是 E 上的非负简单函数,且 0≤ϕ(x)≤f(x)}
单调收敛定理:如果非负函数列 { f n ( x ) } \{f_n(x)\} {fn(x)}在可测集 E E E上单调增加且逐点收敛到函数 f ( x ) f(x) f(x),则 lim n → ∞ ∫ E f n ( x ) d x = ∫ E f ( x ) d x \lim_{n \to \infty} \int_E f_n(x) \, dx = \int_E f(x) \, dx limn→∞∫Efn(x)dx=∫Ef(x)dx。
法图引理:如果非负函数列 { f n ( x ) } \{f_n(x)\} {fn(x)}在可测集 E E E上逐点收敛到函数 f ( x ) f(x) f(x),且对任意 n n n, ∫ E f n ( x ) d x ≤ M \int_E f_n(x) \, dx \leq M ∫Efn(x)dx≤M(其中 M M M是某个常数),则 lim n → ∞ ∫ E f n ( x ) d x = ∫ E f ( x ) d x \lim_{n \to \infty} \int_E f_n(x) \, dx = \int_E f(x) \, dx limn→∞∫Efn(x)dx=∫Ef(x)dx。
逐项积分定理:如果 { f n ( x ) } \{f_n(x)\} {fn(x)}是可测集 E E E上的一列非负可测函数,则 ∫ E ∑ n = 1 ∞ f n ( x ) d x = ∑ n = 1 ∞ ∫ E f n ( x ) d x \int_E \sum_{n=1}^\infty f_n(x) \, dx = \sum_{n=1}^\infty \int_E f_n(x) \, dx ∫E∑n=1∞fn(x)dx=∑n=1∞∫Efn(x)dx(假设右边的级数收敛)。
在实际问题中,勒贝格积分的计算往往需要结合具体问题的特性和上述定理来进行。
三、例子
考虑狄利克雷函数 D ( x ) D(x) D(x),其定义为:
D ( x ) = { 1 , 如果 x 是有理数 0 , 如果 x 是无理数 D(x) = \begin{cases} 1, & \text{如果 } x \text{ 是有理数} \\ 0, & \text{如果 } x \text{ 是无理数} \end{cases} D(x)={1,0,如果 x 是有理数如果 x 是无理数
这个函数在实数集上几乎处处不连续,因此没有黎曼积分。但是,在勒贝格积分的框架下,我们可以计算它在整个实数集 R R R上的积分。由于有理数集 Q Q Q在实数集 R R R中是可数的,因此其勒贝格测度为0(即 m ( Q ) = 0 m(Q) = 0 m(Q)=0)。而无理数集 Q c Q^c Qc(即 R − Q R - Q R−Q)是 R R R的剩余部分,其勒贝格测度为无穷大(即 m ( Q c ) = + ∞ m(Q^c) = +\infty m(Qc)=+∞)。因此,狄利克雷函数在整个实数集上的勒贝格积分为:
∫ R D ( x ) d x = 1 ⋅ m ( Q ) + 0 ⋅ m ( Q c ) = 1 ⋅ 0 + 0 ⋅ + ∞ = 0 \int_R D(x) \, dx = 1 \cdot m(Q) + 0 \cdot m(Q^c) = 1 \cdot 0 + 0 \cdot +\infty = 0 ∫RD(x)dx=1⋅m(Q)+0⋅m(Qc)=1⋅0+0⋅+∞=0
定义: 设 ( X , F ) 和 ( Y , G ) 是两个可测空间,其中 X 和 Y 是非空集合, F 是 X 的一个 σ 代数, G 是 Y 的一个 σ 代数。 称从 X 到 Y 的映射 f 设(X,F)和(Y,G)是两个可测空间,其中X和Y是非空集合,\\F是X的一个σ代数,G是Y的一个σ代数。\\称从X到Y的映射f 设(X,F)和(Y,G)是两个可测空间,其中X和Y是非空集合,F是X的一个σ代数,G是Y的一个σ代数。称从X到Y的映射f为可测映射, 如果对于 G 中的任意集合 B , f 的逆映射 f − 1 ( B ) (即所有映射到 B 中的 X 中元素的集合) 都属于 F 。简言之,可测映射保持可测集的可测性。 如果对于G中的任意集合B,\\f的逆映射f^{-1}(B)(即所有映射到B中的X中元素的集合)\\都属于F。简言之,可测映射保持可测集的可测性。 如果对于G中的任意集合B,f的逆映射f−1(B)(即所有映射到B中的X中元素的集合)都属于F。简言之,可测映射保持可测集的可测性。