解析出实体(Item),则交给实体管道进行进一步的处理;
解析出的是链接(URL),则把URL交给调度器等待抓取。
利用上述结果,可以看到li[index]中index为专题序列。因此可以构建Xpath列表如下:
item_selector = response.xpath(‘/html/body/div[3]/div/div[3]/div[1]/div[1]/div[2]/div/div/ul/li/a/@href’)
因此可以构建如下XPath:
next_selector = response.xpath(‘//a[@class=“next”]’)
response.xpath(‘/html/body/div[3]/div/div[2]/div/div[2]/div[1]/div/a/img/@src’).extract_first()
index = response.xpath(‘/html/body/div[3]/div/div[2]/div/div[1]/div[1]/span/text()’).extract_first()
title = response.xpath(‘/html/body/div[3]/div/div[2]/div/div[1]/div[1]/h1/text()’).extract_first()
name = title + ‘_’ + index + ‘.jpg’
因此可以通过首页地址和图片序号来构建每一张图片详情页地址。
first_url = response.url
num = response.xpath(‘/html/body/div[3]/div/div[2]/div/div[1]/div[1]/em/text()’).extract_first()
num = int(num)
for i in range(2,num+1):
next_url = ‘.’.join(first_url.split(‘.’)[:-1]) + ‘_’ + str(i) + ‘.html’
本项目用于下载图片,因此可以仅构建图片名和图片地址字段。
import scrapy
class Win4000Item(scrapy.Item):
url = scrapy.Field()
name = scrapy.Field()
代码详解见代码注释。
import scrapy
from win4000.items import Win4000Item
from urllib import parse
import time
class PicturesSpider(scrapy.Spider):
name = ‘pictures’
allowed_domains = [‘win4000.com’]
start_urls = [‘http://www.win4000.com/zt/fengjing.html’]
start_urls = [‘http://www.win4000.com/zt/fengjing.html’]
cookie={
“t”:“29b7c2a8d2bbf060dc7b9ec00e75a0c5”,
“r”:“7957”,
“UM_distinctid”:“178c933b40e9-08430036bca215-7e22675c-1fa400-178c933b40fa00”,
“CNZZDATA1279564249”:“1468742421-1618282415-%7C1618282415”,
“XSRF-TOKEN”:“eyJpdiI6Ik8rbStsK1Fwem5zR2YzS29ESlI2dmc9PSIsInZhbHVlIjoiaDl5bXp5b1VvWmdSYklWWkEwMWJBK0FaZG9OaDA1VGQ2akZ0RDNISWNDM0hnOW11Q0JTVDZFNlY4cVwvSTBjQlltUG9tMnFUcWd5MzluUVZ0NDBLZlJuRWFuaVF0U3k0XC9CU1dIUzJybkorUEJ3Y2hRZTNcL0JqdjZnWjE5SXFiNm8iLCJtYWMiOiI2OTBjOTkzMTczYWQwNzRiZWY5MWMyY2JkNTQxYjlmZDE2OWUyYmNjNDNhNGYwNDAyYzRmYTk5M2JhNjg5ZmMwIn0%3D”,
“win4000_session”:“eyJpdiI6Inc2dFprdkdMTHZMSldlMXZ2a1cwWGc9PSIsInZhbHVlIjoiQkZHVlNYWWlET0NyWWlEb2tNS0hDSXAwZGVZV05vTmY0N0ZiaFdTa1VRZUVqWkRmNWJuNGJjNkFNa3pwMWtBcFRleCt4SUFhdDdoYnlPMGRTS0dOR0tkdmVtVDhzUWdTTTc3YXpDb0ZPMjVBVGJzM2NoZzlGa045Qnl0MzRTVUciLCJtYWMiOiI2M2VmMTEyMDkxNTIwNmJjZjViYTg4MjIwZGIxNTlmZWUyMTJlYWZhNjk5ZmM0NzgyMTA3MWE4MjljOWY3NTBiIn0%3D”
}
def start_requests(self):
“”"
重构start_requests函数,用于发送带有cookie的请求,模仿浏览器行为
“”"
yield scrapy.Request(‘http://www.win4000.com/zt/fengjing.html’, callback=self.parse, cookies=self.cookie)
def parse(self,response):
next_selector = response.xpath(‘//a[@class=“next”]’)
for url in next_selector.xpath(‘@href’).extract():
url = parse.urljoin(response.url,url)
time.sleep(3)
yield scrapy.Request(url, cookies=self.cookie)
item_selector = response.xpath(‘/html/body/div[3]/div/div[3]/div[1]/div[1]/div[2]/div/div/ul/li/a/@href’)
for item_url in item_selector.extract():
item_url = parse.urljoin(response.url,item_url)
#print(item_url)
time.sleep(3)
yield scrapy.Request(item_url,callback=self.parse_item, cookies=self.cookie)
def parse_item(self,response):
“”"
用于解析专题页面
“”"
item = Win4000Item()
item[‘url’] = response.xpath(‘/html/body/div[3]/div/div[2]/div/div[2]/div[1]/div/a/img/@src’).extract_first()
index = response.xpath(‘/html/body/div[3]/div/div[2]/div/div[1]/div[1]/span/text()’).extract_first()
item[‘name’] = response.xpath(‘/html/body/div[3]/div/div[2]/div/div[1]/div[1]/h1/text()’).extract_first() + ‘_’ + index + ‘.jpg’
yield item
first_url = response.url
num = response.xpath(‘/html/body/div[3]/div/div[2]/div/div[1]/div[1]/em/text()’).extract_first()
num = int(num)
for i in range(2,num+1):
next_url = ‘.’.join(first_url.split(‘.’)[:-1]) + ‘_’ + str(i) + ‘.html’
yield scrapy.Request(next_url,callback=self.parse_detail,cookies=self.cookie)
def parse_detail(self,response):
“”"
解析图片详情页面,构建实体
“”"
item = Win4000Item()
item[‘url’] = response.xpath(‘/html/body/div[3]/div/div[2]/div/div[2]/div[1]/div/a/img/@src’).extract_first()
index = response.xpath(‘/html/body/div[3]/div/div[2]/div/div[1]/div[1]/span/text()’).extract_first()
item[‘name’] = response.xpath(‘/html/body/div[3]/div/div[2]/div/div[1]/div[1]/h1/text()’).extract_first() + ‘_’ + index + ‘.jpg’
yield item
修改win4000/win4000/settings.py
中的以下项。
BOT_NAME = ‘win4000’
SPIDER_MODULES = [‘win4000.spiders’]
NEWSPIDER_MODULE = ‘win4000.spiders’
IMAGES_STORE = ‘./result’
USER_AGENT = ‘Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0’
ROBOTSTXT_OBEY = False
DOWNLOAD_DELAY = 3
COOKIES_ENABLED = True
ITEM_PIPELINES = {
‘win4000.pipelines.Win4000Pipeline’: 300,
}
修改win4000/win4000/pipelines.py
文件。
from itemadapter import ItemAdapter
from scrapy.pipelines.images import ImagesPipeline
import scrapy
import os
from scrapy.exceptions import DropItem
class Win4000Pipeline(ImagesPipeline):
def get_media_requests(self, item, info):
yield scrapy.Request(url=item[‘url’],meta={‘name’:item[‘name’]})
def item_completed(self, results, item, info):
if not results[0][0]:
with open(‘img_error_name.txt’,‘a’) as f_name:
error_name = str(item[‘name’])
f_name.write(error_name)
f_name.write(‘\n’)
with open(‘img_error_url.txt’,‘a’) as f_url:
error_url = str(item[‘url’])
f_url.write(error_url)
f_url.write(‘\n’)
raise DropItem(‘下载失败’)
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
g](https://i-blog.csdnimg.cn/blog_migrate/ad7909a4730b780656545eb9552a5320.png)
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
上一篇:如何监控纸币流通速率和换手率?
下一篇:爬虫框架Scrapy应用